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Abstract

This report documents a Fortran computer code package that is used for the evaluation
of gas-phase multicomponent viscosities, thermal conductivities, di�usion coe�cients, and
thermal di�usion coe�cients. The package is in two parts. The �rst is a preprocessor that
computes polynomial �ts to the temperature dependent parts of the pure species viscosities
and binary di�usion coe�cients. The coe�cients of these �ts are passed to a library of
subroutines via a linking �le. Then, any subroutine from this library may be called to
return either pure species properties or multicomponent gas mixture properties. This
package uses the chemical kinetics package CHEMKIN, and transport property subroutines
are designed to be used in conjunction with the CHEMKIN subroutine library. This
package supersedes a previously-written transport property code package in which we
used certain mixture averaging rules to compute mixture properties rather than the full
multicomponent formulation.
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A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF

GAS-PHASE MULTICOMPONENT TRANSPORT PROPERTIES

I. INTRODUCTION

Characterizing the molecular transport of species, momentum, and energy in a mul-

ticomponent gaseous mixture requires the evaluation of di�usion coe�cients, viscosities,

thermal conductivities, and thermal di�usion coe�cients. Although evaluating pure species

properties follows standard kinetic theory expressions, one can choose from a range of pos-

sibilities for evaluating mixture properties. Moreover, computing the mixture properties

can be expensive, and depending on the use of the results, it is often advantageous to make

simplifying assumptions to reduce the computational cost.

For most applications, gas mixture properties can be determined from pure species

properties via certain approximate mixture averaging rules. Recently, however, we have

encountered applications in which the approximate averaging rules are not adaquate. As

a result we have undertaken a software project to provide full multicomponent transport

properties. This code package is fully compatible with our thermodynamic properties and

chemical kinetics package CHEMKIN (Kee, Miller, and Je�erson, 1980) and it supersedes

our previous transport package (Kee et al., 1983). The new package provides both the

mixture-averaged forms as well as the multicomponent formulations. The multicomponent

methods are based on the work of Dixon-Lewis (1968) and the methods for mixture-

averaged approach are reported in Warnatz (1982) and Kee et al. (1983).

The multicomponent formulation has several important advantages over the relatively

simpler mixture formulas. The �rst advantage is accuracy. The mixture formulas are only

correct asymptotically in some special cases, such as in a binary mixture, or in di�usion of

trace amounts of species into a nearly pure species, or systems in which all species except

one move with nearly the same di�usion velocity (Bird et al., 1960). A second de�ciency

of the mixture formulas is that overall mass conservation is not necessarily preserved when

solving the species continuity equations. To compensate for this shortcoming one has to ap-

ply some ad hoc correction procedure (cf., Co�ee and Heimerl, 1981; Kee et al., 1983). The

multicomponent formulation guarantees mass conservation without any correction factors,
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which is a clear advantage. The only real de�ciency of the multicomponent formulation is

its computational expense. Evaluating the ordinary multicomponent di�usion coe�cients

involves inverting a K �K matrix, and evaluating the thermal conductivity and thermal

di�usion coe�cients requires solving a 3K � 3K system of algebraic equations, where K

is the number of species.

The structure of the present multicomponent transport package is analogous to that

of our previous transport package. That is, polynomial �ts are �rst computed for the

temperature-dependent parts of the kinetic theory expressions for pure species viscosities

and binary di�usion coe�cients. (The pure species thermal conductivities are also �t, but

are only used in the mixture-averaged formulation.) The coe�cients from the �t are passed

to a library of subroutines that can be used to return either mixture-averaged properties

or multicomponent properties. This �tting procedure is used so that expensive operations,

such as evaluation of collision integrals, need be done only once and not every time a

property is needed.

The �rst task in this document is to review the kinetic theory expressions for the pure

species viscosities and the binary di�usion coe�cients. Then, we describe how momentum,

energy, and species mass 
uxes are computed from the velocity, temperature and species

gradients and either mixture-averaged or multicomponent transport properties. Having

these relationships in mind, the report next describes the procedures to determine multi-

component transport properties from the pure species expressions. The third part of the

report describes how to use the software package and how it relates to CHEMKIN and our

previous transport package. The following chapter describes each of the multicomponent

subroutines that can be called by the package's user. The last chapter lists the data base

that we are currently using.

II. THE TRANSPORT EQUATIONS

Pure Species Viscosity and Binary Di�usion Coe�cients

The single component viscosities are given by the standard kinetic theory expression

(cf., Hirschfelder et al., 1954)

�k =
5

16

p
�mkkBT

��2k

(2;2)�

; (1)

where �k is the Lennard-Jones collision diameter, mk is the molecular mass, kB is the

Boltzmann constant, and T is the temperature. The collision integral 
(2;2)� depends on

the reduced temperature given by

T �
k =

kBT

�k
;
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and the reduced dipole moment given by

��k =
1

2

�2k
�k�

3
k

: (2)

In the above expressions �k is the Lennard-Jones potential well depth and �k is the dipole

moment. The collision integral value is determined by a quadradic interpolation of the

tables based on Stockmayer potentials given in Monchick and Mason (1961).

The binary di�usion coe�cients (cf., Hirschfelder et al., 1954) are given in terms of

pressure and temperature as

Djk =
3

16

q
2�k3BT

3=mjk

P��2jk

(1;1)�

; (3)

where mjk is the reduced molecular mass for the (j; k) species pair

mjk =
mjmk

mj +mk
; (4)

and �jk is the reduced collision diameter. The collision integral 
(1;1)� (based on Stock-

mayer potentials) depends on the reduced temperature, T �
jk, which in turn may depend

on the species dipole moments �k, and polarizabilities �k. In computing the reduced

quantities, we consider two cases, depending on whether the collision partners are polar

or nonpolar. For the case that the partners are either both polar or both nonpolar the

following expressions apply:

�jk
kB

=

s�
�j
kB

��
�k
kB

�
(5)

�jk =
1

2
(�j + �k) (6)

�2jk = �j�k: (7)

For the case of a polar molecule interacting with a nonpolar molecule:

�np
kB

= �2

s�
�n
kB

��
�p
kB

�
(8)

�np =
1

2
(�n + �p)�

� 1

6 (9)

�2np = 0 (10)

where,

� = 1 +
1

4
��n�

�
p

r
�p
�n
: (11)
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In the above equations ��n is the reduced polarizability for the nonpolar molecule and ��p
is the reduced dipole moment for the polar molecule. The reduced values are given by

��n =
�n
�3n

(12)

��p =
�pq
�p�3p

: (13)

The table look-up evaluation of the collision integral 
(1;1)� depends on the reduced

temperature

T �
jk =

kBT

�jk
; (14)

and the reduced dipole moment,

��jk =
1

2
��2jk : (15)

In our previous transport package we added a second-order correction factor to the

binary di�usion coe�cients (Marrero and Mason, 1972). However, in the multicompo-

nent case, we speci�cally need only the �rst approximation to the di�usion coe�cients,

and therefore the second-order correction is not made. As a result, the binary di�usion

coe�cients computed by the two codes are di�erent. For the mixture-averaged di�usion

coe�cients, the present code is presumably less accurate than the previous one because it

lacks the second-order correction. However, we view this as quite acceptable since the new

subroutines are now available to compute multicomponent properties when high accuracy

is important.

Pure Species Thermal Conductivities

The pure species thermal conductivities are computed only for the purpose of later

evaluating mixture-averaged thermal conductivities; the mixture conductivity in the mul-

ticomponent case does not depend on the pure species formulas stated in this section. Here

we assume the individual species conductivities to be composed of translational, rotational,

and vibrational contributions as given by Warnatz (1982),

�k =
�k
Mk

(ftrans:Cv;trans: + frot:Cv;rot: + fvib:Cv;vib:) (16)

where

ftrans: =
5

2
(1� 2

�

Cv;rot:

Cv;trans:

A

B
) (17)

frot: =
�Dkk

�k
(1 +

2

�

A

B
) (18)
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fvib: =
�Dkk

�k
(19)

and,

A =
5

2
� �Dkk

�k
(20)

B = Zrot: +
2

�

�
5

3

Cv;rot:

R
+
�Dkk

�k

�
: (21)

The molar heat capacity Cv relationships are di�erent depending on whether or not the

molecule is linear or not. In the case of a linear molecule,

Cv;trans:

R
=

3

2
(22)

Cv;rot:

R
= 1 (23)

Cv;vib: = Cv � 5

2
R: (24)

In the above, Cv is the speci�c heat at constant volume of the molecule and R is the

universal gas constant. For the case of a nonlinear molecule,

Cv;trans:

R
=

3

2
(25)

Cv;rot:

R
=

3

2
(26)

Cv;vib: = Cv � 3R: (27)

The translational part of Cv is always the same,

Cv;trans: =
3

2
R: (28)

In the case of single atoms (H atoms, for example) there are no internal contributions to

Cv, and hence,

�k =
�k
Wk

(ftrans:
3

2
R); (29)

where ftrans: = 5=2. The \self-di�usion" coe�cient comes from the following expression,

Dkk =
3

16

q
2�k3BT

3=mk

P��2k

(1;1)�

: (30)

The density comes from the equation of state for a perfect gas,

� =
PMk

RT
; (31)
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with P being the pressure and Mk the species molar mass.

The rotational relaxation collision number is a parameter that we assume is available at

298K (included in the data base). It has a temperature dependence given in an expression

by Parker (1959) and Brau and Jonkman (1970),

Zrot:(T ) = Zrot:(298)
F (298)

F (T )
; (32)

where,

F (T ) = 1 +
�

3

2

2

�
�=kB
T

�1

2

+

�
�2

4
+ 2

��
�=kB
T

�
+ �

3

2

�
�=kB
T

�3

2

: (33)

The Pure-Species Fitting Procedure

To expedite the evaluation of transport properties in a computer code, such as a 
ame

code, we �t the temperature dependent parts of the pure species property expressions.

Then, rather than evaluating the complex expressions for the properties, only compara-

tively simple �ts need to be evaluated.

We use a polynomial �t of the logarithm of the property versus the logarithm of the

temperature. For the viscosity

ln �k =

NX
n=1

an;k (lnT )
n�1; (34)

and for thermal conductivity,

ln�k =

NX
n=1

bn;k (lnT )
n�1: (35)

The �ts are done for each pair of binary di�usion coe�cients in the system.

lnDjk =

NX
n=1

dn;jk (lnT )
n�1: (36)

We have used third order polynomial �ts (i.e., N = 4) in the computer codes and �nd that

the �tting errors are well within one percent. The �tting procedure must be carried out

for the particular system of gases that is present in a given problem. Therefore, the �tting

can not be done \once and for all," but must be done once at the beginning of each new

problem.

The viscosity and conductivity are independent of pressure, but the di�usion coe�-

cients depend inversely on pressure. The di�usion coe�cient �ts are computed at unit
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pressure; the later evaluation of a di�usion coe�cient is obtained by simply dividing the

di�usion coe�cient as evaluated from the �t by the actual pressure.

Even though the single component conductivities are �t and passed to the subroutine

library they are not used in the computation of multicomponent thermal conductivities;

they are used only for the evaluation of the mixture-averaged conductivities.

The Mass, Momentum, and Energy Fluxes

The momentum 
ux is related to the gas mixture viscosity and the velocities by

= ��
�
rv + (rv)y

�
+

�
2

3
� � �

�
(r � v); (37)

where v is the velocity vector, (rv) is the dyadic product, (rv)y is the transpose of the
dyadic product, and is the unit tensor (Bird et al., 1960). In this software package we

provide average values for the mixture viscosity �, but we do not provide information on

the bulk viscosity �.

The energy 
ux is given in terms of the thermal conductivity �0 by

q =
KX

k=1

jkhk � �0rT �
KX

k=1

RT

MkXk
DT
k dk; (38)

where,

dk = rXk + (Xk � Yk)
1

p
rp: (39)

The multicomponent species 
ux is given by

jk = �YkVk; (40)

where Yk are the mass fractions and the di�usion velocities are given by

Vk =
1

XkM

KX
j 6=k

MjDkjdj �
DT
k

�Yk

1

T
rT: (41)

The species molar masses are denoted by Mk and the mean molar mass by M . Dkj

are the ordinary multicomponent di�usion coe�cients, and DT
k are the thermal di�usion

coe�cients.

By de�nition in the mixture-average formulations, the di�usion velocity is related to

the species gradients by a Fickian formula as,

Vk = � 1

Xk
Dkmdk �

DT
k

�Yk

1

T
rT: (42)
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The mixture di�usion coe�cient for species k is computed as (Bird et al., 1960)

Dkm =
1� YkPK

j 6=kXj=Djk

: (43)

A potential problem with this expression is that it is not mathematically well-de�ned in

the limit of the mixture becoming a pure species. Even though di�usion itself has no real

meaning in the case of a pure species, a computer-program implementation should ensure

that the di�usion coe�cients behave reasonably and that the code does not \blow up"

when the pure species condition is reached. We circumvent these problems by evaluating

the di�usion coe�cients in the following equivalent way.

Dkm =

PK
j 6=kXjMj

M
PK

j 6=kXj=Djk

(44)

In this form the roundo� is accumulated in roughly the same way in both the numerator and

denominator, and thus the quotient is well-behaved as the pure species limit is approached.

However, if the mixture is exactly a pure species, the formula is still unde�ned.

To overcome this di�culty we always retain a small quantity of each species. In other

words, for the purposes of computing mixture di�usion coe�cients, we simply do not allow

a pure species situation to occur; we always maintain a residual amount of each species.

Speci�cally, we assume in the above formulas that

Xk = X̂k + �; (45)

where X̂k is the actual mole fraction and � is a small number that is numerically insignif-

icant compared to any mole fraction of interest, yet which is large enough that there is no

trouble representing it on any computer. A value of 10�12 for � works well.

In some cases (for example, Warnatz, 1978 and Coltrin et al., 1986) it can be useful to

treat multicomponent di�usion in terms of an equivalent Fickian di�usion process. This

is sometimes a programming convenience in that the computer data structure for the

multicomponent process can be made to look like a Fickian process. To do so suppose that

a mixture di�usion coe�cient can be de�ned in such a way that the di�usion velocity is

written as Eq. (42) rather than Eq. (41). This equivalent Fickian di�usion coe�cient is

then derived by equating Eq. (41) and (42) and solving for Dkm as

Dkm = �
PK

j 6=kMjDkjdj

Mdk
: (46)

Unfortunately, this equation is unde�ned as the mixture approaches a pure species condi-

tion. To help deal with this di�culty a small number (� = 10�12) may be added to both

the numerator and denominator to obtain

Dkm = �
PK

j 6=kMjDkjdj + �

M (dk + �)
: (47)
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Furthermore, for the purposes of evaluating the \multicomponent" Dkm, it may be advan-

tageous to compute the dk in the denominator using the the fact thatrXk = �PK
j 6=krXj.

In this way the summations in the numerator and the denominator accumulate any round-

ing errors in roughly the same way, and thus the quotient is more likely to be well behaved

as the pure species limit is approached. Since there is no di�usion due to species gradients

in a pure species situation, the exact value of the di�usion coe�cient is not as important

as the need for it simply to be well de�ned, and thus not cause computational di�culties.

In practice we have found mixed results using the equivalent Fickian di�usion to repre-

sent multicomponent processes. In some marching or parabolic problems, such as boundary

layer 
ow in channels (Coltrin et al., 1986), we �nd that the equivalent Fickian formulation

is preferable. However, in some steady state boundary value problems, we have found that

the equivalent Fickian formulation fails to converge, whereas the regular multicomponent

formulation works quite well. Thus, as of this date, we cannot con�dently recommend

which formulation should be preferred for any given application.

The Mixture-Averaged Properties

Our objective in this section is to determine mixture properties from the pure species

properties. In the case of viscosity, we use the semi-empirical formula due to Wilke (1950)

and modi�ed by Bird et al. (1960). The Wilke formula for mixture viscosity is given by

� =

KX
k=1

Xk�kPK
j=1Xj�kj

; (48)

where,

�kj =
1p
8

�
1 +

Mk

Mj

�� 1

2

 
1 +

�
�k
�j

�1

2
�
Mj

Mk

�1

4

!2
: (49)

For the mixture-averaged thermal conductivity we use a combination averaging formula

(Mathur et al., 1967)

� =
1

2

 
KX

k=1

Xk�k +
1PK

k=1Xk=�k

!
(50)

Both of these formulas were used in our previous mixture transport code (Kee et al., 1983).

Thermal Di�usion Ratios

The thermal di�usion coe�cients are evaluated in the following section on multicompo-

nent properties. This section describes a relatively inexpensive way to estimate the thermal

di�usion of light species into a mixture. This is the method that is used in our previous
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transport package, and it is included here for the sake of upward compatibility. This ap-

proximate method is considerably less accurate than the thermal di�usion coe�cients that

are computed from the multicomponent formulation.

A thermal di�usion ratio �k can be de�ned such that the thermal di�usion velocity

Wki is given by

Wki =
Dk�k

Xk

1

T

@T

@xi
(51)

where xi is a spatial coordinate. The mole fractions are given by Xk, and the Dkm are

mixture di�usion coe�cients Eq.(42). In this form we only consider thermal di�usion in

the trace, light component limit (speci�cally, species k having molecular mass less than 5).

The thermal di�usion ratio (Chapman and Cowling, 1970) is given by

�k =
KX

j 6=k

�kj (52)

where

�kj =
15

2

(2A�
kj + 5)(6C�

kj � 5)

A�
kj(16A

�
kj � 12B�

kj + 55)

Mj �Mk

Mj +Mk
XjXk (53)

Three ratios of collision integrals are de�ned by

A�
ij =

1

2



(2;2)
ij



(1;1)
ij

(54)

B�
ij =

1

3

5

(1;2)
ij � 


(1;3)
ij



(1;1)
ij

(55)

C�
ij =

1

3



(1;2)
ij



(1;1)
ij

(56)

We have �t polynomials to tables of A�
ij, B

�
ij, and C

�
ij (Monchick and Mason, 1961).

In the preprocessor �tting code (where the pure species properties are �t) we also

�t the temperature dependent parts of the pairs of the thermal di�usion ratios for each

light species into all the other species. That is, we �t �kj=(XjXk) for all species pairs in

which Wk � 5. Since the �kj depend weakly on temperature, we �t to polynomials in

temperature, rather than the logarithm of temperature. The coe�cients of these �ts are

written onto the linking �le.
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The Multicomponent Properties

The multicomponent di�usion coe�cients, thermal conductivities, and thermal di�u-

sion coe�cients are computed from the solution of a system of equations de�ned by what

we call the L matrix. It is convenient to refer to the L matrix in terms of its nine block

sub-matricies, and in this form the system is given by0
@L00;00 L00;10 0
L10;00 L10;10 L10;01

0 L01;10 L01;01

1
A
0
@ a100
a110
a101

1
A =

0
@ 0
X
X

1
A (57)

where right hand side vector is composed of the mole fraction vectors Xk. The multicom-

ponent di�usion coe�cients are given in terms of the inverse of the L00;00 block as

Di;j = Xi
16T

25p

m

mj
(Pij � Pii) ; (58)

where

(P ) =
�
L00;00

��1
: (59)

The thermal conductivities are given in terms of the solution to the system of equations

by

�0;tr: = �
KX

k=1

Xka
1
k10 (60)

�0;int: = �
KX

k=1

Xka
1
k01 (61)

�0 = �0;tr: + �0;int: (62)

and the thermal di�usion coe�cients are given by

DT
k =

8mkXk

5R
a1k00 (63)

The components of the L matrix are given by Dixon-Lewis (1968).

L00;00ij =
16T

25p

KX
k=1

Xk

miDik

�
mjXj (1� �ik)�miXi

�
�ij � �jk

�	

L00;10ij =
8T

5p

KX
k=1

XjXk (�ij � �ik)
mk

�
1:2C�

jk � 1
�

(mj +mk)Djk
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L10;00ij = L00;10ji

L01;00ij = L00;01ji = 0

L10;10ij =
16T

25p

KX
k=1

mi

mj

XiXk

(mi +mk)
2Dik

�
��

�jk � �ij
� �15

2
m2

j +
25

4
m2

k � 3m2
kB

�
ik

�

� 4mjmkA
�
ik

�
�jk + �ij

� �
1 +

5

3�

�
ci;rot:
kB�ik

+
ck;rot:
kB�ki

���
(64)

L10;10ii = �16miX
2
i

R�i

�
1 +

10ci;rot:
kB�ii

�
� 16T

25p

KX
k 6=i

XiXk

(mi +mk)
2Dik

�
�
15

2
m2

i +
25

4
m2

k � 3m2
kB

�
ik + 4mimkA

�
ik

�
�
1 +

5

3�

�
ci;rot:
kB�ik

+
ck;rot:
kB�ki

���

L10;01ij =
32T

5�pcj;int:

KX
k=1

mjA
�
jk

(mj +mk)Djk
(�ik + �ij)XjXk

cj;rot:
kB�jk

L10;01ii =
16

3�

miX
2
i kB

R�ici;int:

ci;rot:
kB�ii

+
32TkB
5�pci;int:

KX
k 6=i

miA
�
ik

(mi +mk)Dik
XiXk

ci;rot:
kB�ik

L01;10ij = L10;01ji

L01;01ii = � 8k2B
�c2i;int:

miX
2
i

R�i

ci;rot:
kB�ii

� 4kBT

ci;int:p

8<
:

KX
k=1

XiXk

Di int:;k
+

KX
k 6=i

12XiXk

5�ci;int:

mi

mk

A�
ik

Dik

ci;rot:
�ii

9=
;

L01;01ij = 0 (i 6= j)

In these equations T is the temperature, p is the pressure, Xk is the mole fraction of

species k, Dik are the binary di�usion coe�cients, and mi is the molecular mass of species

i. Three ratios of collision integrals A�
jk, B

�
jk, and C�

jk are de�ned by Eqs. (54-56). The
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universal gas constant is represented by R and the pure species viscosities are given as �k.

The rotational and internal parts of the species molecular heat capacities are represented

by ck;rot: and ck;int:. For a linear molecule

ck;rot
kB

= 1; (65)

and for a nonlinear molecule
ck;rot
kB

=
3

2
: (66)

The internal component of heat capacity is computed by subtracting the translational part

from the full heat capacity as evaluated from the CHEMKIN thermodynamic data base,

ck;int
kB

=
cp
kB

� 3

2
: (67)

Following Dixon-Lewis (1968), we assume that the relaxation collision numbers �ij depend

only on the species i, i.e., all �ij = �ii. The rotational relaxation collision number at 298K

is one of the parameters in the transport data base, and its temperature dependence was

given in Eqs. (32 ) and (33 ).

For non-polar gases the binary di�usion coe�cients for internal energy Di int:;k are ap-

proximated by the ordinary binary di�usion coe�cients. However, in the case of collisions

between polar molecules, where the exchange is energetically resonant, a large correction

of the following form is necessary,

Dp int:;p =
Dpp

(1 + �0pp)
; (68)

where,

�0pp =
2985p
T3

(69)

when the temperature is in Kelvins.

There are some special cases that require modi�cation of the L matrix. First, for

mixtures containing monatomic gases, the rows that refer to the monatomic components

in the lower block row and the corresponding columns in the last block column must

be omitted. That this is required is clear by noting that the internal part of the heat

capacity appears in the denominator of terms in these rows and columns (e.g., L10;01ij ).

An additional problem arises as a pure species situation is approached, because all Xk

except one approach zero, and this causes the L matrix to become singular. Therefore, for

the purposes of forming L we do not allow a pure species situation to occur. We always

retain a residual amount of each species by computing the mole fractions from

Xk =
MYk
Mk

+ �: (70)
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A value of � = 10�12 works well; it is small enough to be numerically insigni�cant compared

to any mole fraction of interest, yet it is large enough to be represented on nearly any

computer.

Species Conservation

Some care needs to be taken in using the mixture-averaged di�usion coe�cients as

described here. The mixture formulas are approximations, and they are not constrained

to require that the net species di�usion 
ux is zero, i.e., the condition,

KX
k=1

VkYk = 0 (71)

need not be satis�ed. Therefore, one must expect that applying these mixture di�usion

relationships in the solution of a system of species conservation equations should lead to

some nonconservation, i.e., the resultant mass fractions will not sum to one. Therefore,

one of a number of corrective actions must be invoked to ensure mass conservation.

Unfortunately, resolution of the conservation problem requires knowledge of species


ux, and hence details of the speci�c problem and discretization method. Therefore, it

is not reasonable in the general setting of the present code package to attempt to enforce

conservation. Nevertheless, the user of the package must be aware of the di�culty, and

consider its resolution when setting up the di�erence approximations to his particular

system of conservation equations.

One attractive method is to de�ne a \conservation di�usion velocity" as Co�ee and

Heimerl (1981) recommend. In this approach we assume that the di�usion velocity vector

is given as

Vk = V̂k +Vc; (72)

where V̂k is the ordinary di�usion velocity Eq.(42) and Vc is a constant correction fac-

tor (independent of species, but spatially varying) introduced to satisfy Eq. (71). The

correction velocity is de�ned by

Vc = �
KX

k=1

YkV̂k: (73)

This approach is the one followed by Miller et al. (1982, 1983, 1985) in their 
ame models.

An alternative approach is attractive in problems having one species that is always

present in excess. Here, rather than solving a conservation equation for the one excess

species, its mass fraction is computed simply by subtracting the sum of the remaining mass

fractions from unity. A similar approach involves determining locally at each computational
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cell which species is in excess. The di�usion velocity for that species is computed to require

satisfaction of Eq. (71).

Even though the multicomponent formulation is theoretically forced to conserve mass,

the numerical implementations can cause some slight nonconservation. Depending on the

numerical method, even slight inconsistencies can lead to di�culties. Methods that do a

good job of controlling numerical errors, such as the di�erential/algebraic equation solver

DASSL (Petzold, 1982), are especially sensitive to inconsistencies, and can su�er compu-

tational ine�ciencies or convergence failures. Therefore, even when the multicomponent

formulation is used, it is often advisable to provide corrective measures such as those de-

scribed above for the mixture-averaged approach. However, the magnitude of any such

corrections will be signi�cantly smaller.

III. THE MECHANICS OF USING THE PACKAGE

Using the transport package requires the manipulation of several Fortran programs,

libraries and data �les. Also, it must be used in conjunction with the chemical kinetics

package CHEMKIN. The general 
ow of information is depicted in Fig. 1.

The �rst step is to execute the CHEMKIN Interpreter. CHEMKIN is documented

separately (Kee et al., 1980), so we only outline its use here. The CHEMKIN Interpreter

�rst reads (Unit 5) user-supplied information about the species and chemical reactions in a

problem. It then extracts further information about the species' thermodynamic properties

from a data base (Unit 21). This information is stored on the CHEMKIN Linking File

(Unit 25), a �le that is needed by the transport property �tting code TRANFIT, and later

by the CHEMKIN subroutine library.

The next code to be executed is the transport property �tting code, TRANFIT. It needs

input from a transport property data base (Unit 31), and from the CHEMKIN Linking

File. The transport data base contains molecular parameters for a number of species;

these parameters are: the Lennard-Jones well depth �=kB in Kelvins, the Lennard-Jones

collision diameter � in Angstroms, the dipole moment � in Debyes, the polarizability �

in cubic angstroms, the rotational relaxation collision number, Zrot, and an indicator

regarding the nature and geometrical con�guration of the molecule. The information

coming from the CHEMKIN Linking File contains the species names, and their molar

masses and heat capacities. For a given species, the species names in both the CHEMKIN

and the TRANFIT data bases must correspond exactly. Like the CHEMKIN Interpreter,

the TRANFIT code produces a Linking File (Unit 35) that is later needed in the transport

property subroutine library.

Both the CHEMKIN and the transport subroutine libraries must be initialized before
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Figure 1. Schematic representing the relationship of the transport package, CHEMKIN,

and the user application code.
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use and there is a similar initialization subroutine in each. The transport subroutine library

is initialized by a call to SUBROUTINE MCINIT. Its purpose is to read the transport

Linking File and set up the internal working and storage space that must be made available

to all other subroutines in the library. Once initialized, any subroutine in the library may

be called from the user's Fortran code.

For compatibility purposes the Linking File for the present code is exactly the same as

is used for the previous mixture transport package. The �tting codes are essentially the

same, except for the second order corrections to the binary di�usion coe�cients, which are

not made in the present code. In the case of the subroutines that evaluate multicomponent

thermal conductivities and thermal di�usion coe�cients, the present code does not use

computed �ts to pure species thermal conductivities and thermal di�usion ratios.

IV. SUBROUTINE DESCRIPTIONS

This section provides the detailed descriptions of all subroutines in the library. There

are eleven user-callable subroutines in the package. All subroutine names begin with MC.

The following letter is either an S an A or an M, indicating whether pure species (S),

mixture-averaged (A), or multicomponent (M) properties are returned. The remaining

letters indicate which property is returned: CON for conductivity, VIS for viscosity, DIF

for di�usion coe�cients, CDT for both conductivity and thermal di�usion coe�cients, and

TDR for the thermal di�usion ratios.

A call to the initialization subroutine MCINIT must preceed any other call. This

subroutine is normally called only once at the beginning of a problem; it reads the linking

�le and sets up the internal storage and working space { arrays IMCWRK and RMCWRK.

These arrays are required input to all other subroutines in the library. Besides MCINIT

there is one other non-property subroutine, called MCPRAM; it is used to return the arrays

of molecular parameters that came from the data base for the species in the problem.

All other subroutines are used to compute either viscosities, thermal conductivities, or

di�usion coe�cients. They may be called to return pure species properties, mixture-

averaged properties, or multicomponent properties.

In the input to all subroutines, the state of the gas is speci�ed by the pressure in dynes

per square centimeter, temperature in Kelvins, and the species mole fractions. (Note:

The previous package, Kee et al., 1983, used mass fractions as input.) The properties are

returned in standard CGS units. The order of vector information, such as the vector of

mole fractions or pure species viscosities, is the same as the order declared in the Chemkin

Interpreter input.
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We �rst provide a short description of each subroutine according to its function. Then,

a longer description of each subroutine, listed in alphabetical order, follows.

Initialization and Parameters

SUBROUTINE MCINIT (LINKMC, LOUT, LENIMC, LENRMC, IMCWRK, RMCWRK)

This subroutine serves to read the linking �le from the �tting code and to create

the internal storage and work arrays, IMCWRK(*) and RMCWRK(*). MCINIT

must be called before any other transport subroutine is called. It must be called

after the Chemkin package is initialized.

SUBROUTINE MCPRAM (IMCWRK, RMCWRK, EPS, SIG, DIP, POL, ZROT, NLIN)

This subroutine is called to return the arrays of molecular parameters as read

from the transport data base.

Viscosity

SUBROUTINE MCSVIS (T, RMCWRK, VIS)

This subroutine computes the array of pure species viscosities given the temper-

ature.

SUBROUTINE MCAVIS (T, X, RMCWRK, VISMIX)

This subroutine computes the mixture viscosity given the temperature and the

species mole fractions. It uses modi�cations of the Wilke semi-empirical formulas.

Conductivity

SUBROUTINE MCSCON (T, RMCWRK, CON)

This subroutine computes the array of pure species conductivities given the tem-

perature.

SUBROUTINE MCACON (T, X, RMCWRK, CONMIX)

This subroutine computes the mixture thermal conductivity given the tempera-

ture and the species mole fractions.

SUBROUTINE MCMCDT (P, T, X, KDIM, IMCWRK, RMCWRK, ICKWRK, CKWRK, DT, COND)

This subroutine computes the thermal di�usion coe�cients and mixture thermal

conductivities given the pressure, temperature, and mole fractions.
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Di�usion Coe�cients

SUBROUTINE MCSDIF (P, T, KDIM, RMCWRK, DJK)

This subroutine computes the binary di�usion coe�cients given the pressure and

temperature.

SUBROUTINE MCADIF (P, T, X, RMCWRK, D)

This subroutine computes mixture-averaged di�usion coe�cients given the pres-

sure, temperature, and species mass fractions.

SUBROUTINE MCMDIF (P, T, X, KDIM, IMCWRK, RMCWRK, D)

This subroutine computes the ordinary multicomponent di�usion coe�cients

given the pressure, temperature, and mole fractions.

Thermal Di�usion

SUBROUTINE MCATDR (T, X, IMCWRK, RMCWRK, TDR)

This subroutine computes the thermal di�usion ratios for the light species into

the mixture.

SUBROUTINE MCMCDT (P, T, X, KDIM, IMCWRK, RMCWRK, ICKWRK, CKWRK, DT, COND)

This subroutine computes the thermal di�usion coe�cients, and mixture thermal

conductivities given the pressure, temperature, and mole fractions.
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Detailed Subroutine Descriptions

The following pages list detailed descriptions for the user interface to each of the

package's eleven user-callable subroutines. They are listed in alphebetical order.
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V. TRANSPORT DATA BASE

In this section we list the data base that we currently use. New species are easily

added and as new or better data becomes available, we expect that users will change their

versions of the data base to suit their own needs. This data base should not be viewed

as the last word in transport properties. Instead, it is a good starting point from which

a user will provide the best available data for his particular application. However, when

adding a new species to the data base, be sure that the species name is exactly the same

as it is in the CHEMKIN thermodynamic data base.

The numbers in the data base have been determined by computing \best �ts" to

experimental measurements of some transport property (e.g. viscosity). The procedure

has been used and tested successfully by Warnatz in his 
ame models, and he has generated

most of the parameters in this data base. We note also that the Lennard-Jones parameters

may be estimated following the methods outlined in Svehla (1962).

The �rst 15 columns in each line of the data base are reserved for the species name,

and the �rst character of the name must begin in column 1. (Presently CHEMKIN is

programmed to allow no more than 10-character names.) Columns 16 through 80 are

unformatted, and they contain the molecular parameters for each species. They are, in

order:

1. An index indicating whether the molecule has a monatomic, linear or nonlinear geo-

metrical con�guration. If the index is 0, the molecule is a single atom. If the index is

1 the molecule is linear, and if it is 2, the molecule is nonlinear.

2. The Lennard-Jones potential well depth �=kB in Kelvins.

3. The Lennard-Jones collision diameter � in Angstroms.

4. The dipole moment � in Debye. Note: a Debye is 10�18cm3=2erg1=2.

5. The polarizability � in cubic Angstroms.

6. The rotational relaxation collision number Zrot at 298K.

7. After the last number, a comment �eld can be enclosed in parenthesis.
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